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Perturbative density functional theory for phase transitions
in a two-dimensional antiferromagnetic fluid
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We study the temperature-density phase diagram of a fluid in two dimensions consisting of hard disks
which, in addition, possess an internal~Ising! spin degree of freedom. The Ising spin of each disk couples with
those of its neighbors via a short-ranged antiferromagnetic~AF! interaction. Recent Monte Carlo simulations
have shown that this system undergoes a gas-liquid transition followed by a gas–AF-ordered-square-solid
sublimation transition at low temperatures. Using a perturbative density functional approach we obtain, in
addition to the observed transitions, a freezing transition at high density to a frustrated triangular solid phase.
Interestingly, the calculated phase diagram suggests that at low temperatures, this transition is suppressed so
that over a range of parameters, the system refuses to crystallize.@S1063-651X~97!07902-6#

PACS number~s!: 64.70.Dv, 75.70.Mm, 81.30.Bx
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In this Brief Report we present a density functional@1,2#
theory for phase transitions in a system of hard disks in
dimensions with Ising internal states which couple antifer
magnetically to their neighbors. This antiferromagnetic~AF!
fluid, which is essentially equivalent to an ordering bina
alloy studied@3–5# in an ensemble where the chemical p
tential difference of the two species is held fixed and equa
zero, is expected to have a rich phase diagram due to
interplay between the tendencies to order and to pack
densely as possible. In two dimensions the closest pac
structure is a triangular lattice, which, however, cannot sh
an Ising antiferromagnetic transition because of frustrat
effects. Monte Carlo results@6# show the presence of a ga
liquid transition driven by short-ranged AF order in the li
uid, followed by a gas–almost-fully-AF-ordered-square-
solid transition at low temperatures. The antiferromagne
interaction therefore favors an ordered square lattice s
over a disordered triangular lattice at low temperatures.
high density, the effects of close packing are expected to
dominant and at the close packing density the triangular s
is expected to be the stable phase at all temperatures. Ind
a study of the competition between these effects promise
be interesting.

We describe below a calculation where the effects
short- and long-range AF order have been kept pertu
tively over the hard disk contribution to yield a comple
phase diagram of this system. Our calculated phase diag
~see Fig. 1! shows stable regions corresponding to all t
phases seen in the simulation@6#. For low temperatures an
high densities we obtain an intriguing suppression of
freezing transition to the triangular solid within our pertu
bative calculation. This may signal a breakdown of stand
perturbation theory in this regime, leading to the interest
possibility of the presence of nontrivial~and nonperturba-
tive! phases without long-ranged positional order.

To begin, consider the followingN-particle Hamiltonian
for the AF fluid:

H52(
i, j

N

J~r i2r j !SiSj1(
i, j

N

U~r i2r j !, ~1!
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whereU(r ) is the hard disk potential for particles of diam
eters, Si are spin variables (Si561), andJ(r ) is given by

J~r !5H 2e, s,r,D

0, r.s.
~2!

For D we chose the valueD51.4s which restricts the AF
interaction to nearest neighbors thus eliminating compli
tions due to frustration in the AF-ordered square lattice str
ture. The strength of the AF interactione fixes the energy
scale of the problem and the hard disk diameters supplies a

FIG. 1. Temperature (T* ) and density (r* ) phase diagram of
the antiferromagnetic fluid as obtained from density functio
theory. The square lattice has densityr* 5 1 and is denoted by
h. The region where the triangular lattice is stable is denoted
n. The dotted lines represent the extrapolated coexistence bo
ary between the liquid and the triangular lattice. Our perturbat
density functional theory breaks down for low temperatures a
high densities so that we do not observe a freezing transition in
range of values forT* and r* . Inset shows our calculated gas
liquid phase boundary together with Monte Carlo results from R
@6#. The Bethe-Peierls approximation overestimates the short-ra
AF ordering in the fluid, leading to a higher gas-liquid critical poi
temperature. The horizontal line is the triple line.
3754 © 1997 The American Physical Society
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length scale. The full interaction between the disks thus c
sists of a hard disk part and a square-well~step! part if the
spins point in opposite~same! directions.

Within the density functional formalism@1# the Helm-
holtz free energy per unit volume at temperatu
T* :5T/«5b21/« and densityr*5rs2 is taken to be a
functional of the time averaged number densityr(r ). The
equilibrium value of this free energy is obtained by minim
ing this functional for choices ofr(r …. For magnetic system
which show long-ranged magnetic order, this functional w
generalized@7# to include the magnetization densitym(r )
such that, in addition, one needs to minimize in the spac
m(r ) also. In general, we decompose the free energy of
fluid and the solids into the reference hard disk pa
fHD(@r#), and terms containing the contribution of the ma
netic interaction. Perturbative treatments of attractive in
actions are known to yield essentially correct results for
freezing transition of Lennard-Jones@8# and square-well@9#
fluids. We discuss below this perturbative density functio
theory for the fluid, triangular solid, and the square so
respectively.

In contrast to the ferromagnetic case@10,11,7#, the inclu-
sion of the magnetic interactions for the AF system is n
trivial. The main difference lies in the fact that the fluid an
the triangular solid phasesdo not possess long-ranged A
ordering@6#. However, the effect of short-range AF order
both the fluid and the triangular solid is expected to be
portant. In the former case, this leads to a liquid-gas tra
tion as observed in Monte Carlo simulations@6#. A mean
field treatment for the magnetic part, on the other hand,
completely neglect this effect. In order to include the fr
energy contribution of local short-ranged AF ordering, w
would have to go beyond mean field theory. For the flu
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case this may be achieved by going over one order highe
a systematic, but approximate, cluster expansion@12# and
using a Bethe-Peierls@13# formalism to keep the dominan
nontrivial contribution from short-ranged AF order. In th
spirit of the ferromagnetic calculation@11,7# we use

b f f~r!5r* ln@r* #2r*2r* ln@12h#1r*
h

@12h#

2r* ln@cosh~b«!#Jeff , ~3!

where the packing fractionh5pr* /4 in two dimensions and
the effective interaction strength in the fluid can be appro
mated byJeff5*s

s1Dd2rrg(r ) with g(r ) taken to be the pair
distribution function of thereferencehard disk fluid. For the
calculations reported in this paper, we have obtained
quantity by numerically Fourier transforming the accura
and convenient analytic form for the Ornstein-Zernike dire
correlation function@14# for the hard disk fluid in two di-
mensions due to Rosenfeld@15#.

In the case of the triangular solid the magnetic contrib
tion to the free energy is somewhat more accurately kno
The Ising AF interaction is frustrated in a triangular lattice
any nonzero temperature. The triangular lattice, like
fluid, has only short-ranged AF correlations. As the tempe
ture is lowered these short-ranged AF correlations diver
leading to a zero temperature phase transition in the nea
neighbor Ising AF model on a perfect triangular lattice@16#.
In our case, since the pair interaction range is limited
nearest neighbors we may use theexactexpression for the
excess free energy due to these short-ranged AF correla
for the nearest neighbor AF Ising model on a triangular l
tice @16,17#,
b f t~@r#!5b fHD~@r#!1r* ln~2!2r* ln~e23b«1eb«!

1r*
1

8p2E
0

2pE
0

2p

ln$112k@cosv11cosv21cos~p2v12v2!21#%dv1dv2 , ~4!
’’

n
er
e.,
-
and

he
where we have subtracted the high temperature entr
@ ln(2)# from the magnetic part, andk5(exp@24b«#
21)/(exp@24b«#11)2.

The square lattice exists only at extremely low tempe
tures. In addition, we find that the square lattice is alm
completely AF ordered. In this case we expect a mean fi
treatment of the magnetic part to be exact. The unfrustra
nearest neighbor AF square solid, however, maps exact
its ferromagnetic counterpart which has been studied ea
in Ref. @7# within a mean field approach. To simplify th
calculation, we have here further restricted the average d
sity of the square lattice tor*51. This is justified by the
observation that the square lattice in the, equivalent, fe
magnetic case@7#, was found to be stable only for a tin
region centered around densityr*51. The free energy func
tional in this approximation is given by
py

-
t
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d,
to
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-

b f s~@r#!5b fHD~@r#!1
b

2E dr

V
m~r !jm~r !

2E dr

V
r~r !ln@2cosh$bjm~r !%#. ~5!

The integrals are over the full two-dimensional ‘‘volume
V. The magnetic molecular fieldjm(r ) is given by
jm(r )52*dr 8m(r2r 8)J(r 8). The staggered magnetizatio
densitym(r ), for the antiferromagnetic case that we consid
here, is proportional to the number density, i.
m(r )56m0r(r ), where the numberm0 determines the stag
gered magnetization of the lattice at any temperature
density and has to be obtained self-consistently.

For the hard disk contribution to the free energy for t
solid phases, we use the functionalb fHD(@r#) of thenonuni-
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form densityr(r …. In this calculation, for the hard disk fre
energy functional we have used the Ramakrishnan-Yuss
functional@1# in the form introduced by Ebner, Krishnamu
thy, and Pandit@18#. Using any other free energy function
@1# for the hard disk part gives more or less identical resu
as long as it reproduces the two-dimensional hard disk fre
ing transition~for T*→`) accurately. For both the solids
the free energy functional needs to be minimized with
spect to choices of~nonuniform! densitiesr(r ) to obtain the
Helmholtz free energies of the solid phases. For the
square lattice, in addition, one has to minimize the free
ergy functional Eq.~5! with respect to choices ofm0. To this
end, we approximate the one body densityr(r ) at position
r by a set of nonoverlapping Gaussians with widtha/a2

centered on lattice sitesR in a lattice of lattice paramete
a:

r~r !5
r0Ana

a2p (
R

exp@2a~r2R!2/a2#, ~6!

wherer0 is the average density of the solid andAn denotes
the area of the unit cell. This ansatz for the density n
reduces the free energy functional to afunctionof a ~and in
addition, m0 for the square lattice structure!. The global
minimum of this function in the space ofa ~andm0, if ap-
plicable! for a choice of$R% gives the Helmholtz free energ
of the chosen lattice. Knowing the free energies of the fl
from Eq. ~3!, triangular solid@Eq. ~4!#, and the square solid
@Eq. ~5!# one can construct the full phase diagram in t
temperature-density plane after obtaining the coexiste
densities ~by constructing the convex hull—‘‘Maxwell’s
construction’’! at any given temperature.

Our central result, the phase diagram of Hamiltonian~1!,
is presented in Fig. 1. We obtain a gas-liquid coexiste
region with a critical point at temperatureTc*50.47 and den-
sity rc*5 0.4, which is somewhat higher than the Mon
Carlo results of Ref.@6#. This is due to the fact that th
Bethe-Peierls approximation for short-ranged correlation
the AF fluid overestimates the effect of these correlations
is well known @19,20# that the convergence of cluster@12#
expansions for lattice models with competing interactions
poor and oscillatory. At high temperature the magnetic p
in the Hamiltonian becomes less important and the fl
freezes to a triangular solid without AF order with freezi
parameters (r f* 5 0.84! which are in good agreement wit
results obtained in previous studies@21,22# for the freezing
of hard disks. When the temperature is lowered, however,
AF interaction becomes more and more important. Since
AF interaction is frustrated in the triangular lattice, there
no additional incentive for the system to freeze so that
coexistence densitiesincreasewith decreasing temperature
For temperatures belowT*51.5 the frustration effects be
come so pronounced that the triangular solid structure
comes metastable and we fail to observe freezing. Howe
at these low temperatures and high densities most prob
our approximation for the fluid phase is untenable~the free
energy has been extrapolated for densities ab
r*50.875, which is above the hard disk freezing densit!.
We comment on this aspect below.
ff

s
z-

-

F
-

d

ce

e

in
It

s
rt
d

e
e

e

e-
r,
ly

e

At low temperatures the stability of a square lattice stru
ture at fixed densityr* 5 1 is examined. At temperatur
below T*50.11 we find stable free energy minima@Eq. ~5!#
with realistic values for the Gaussian width parame
a.10 so that the densityr(r … consists of nonoverlapping
Gaussians centered on lattice sites. The square lattice s
ture is stabilized solely by the appearance of the stagge
magnetization due to the AF interaction. The coexisten
densities to the gas phase and the high density liquid ph
were computed with the double tangent construction~see
Fig. 2!. Interestingly, the square lattice phase is found to
in coexistence with a low density gas forr*,1 and a high
density liquid phase forr*.1 in this temperature rang
whereas the triangular solid phase is consistently metasta
This is in direct contrast to the ferromagnetic case@7# where
the square lattice structure was seen to be in coexistence
a low density gas and a triangular solid.

Our study thus raises the following interesting questio
What happens to an AF fluid at low temperatures and h
densities? Although the initial increase of the coexisten
densities for the fluid to triangular solid freezing transitio
can be understood in terms of frustration effects in the tri
gular solid, it is possible that the effects of AF correlatio
are being incorrectly estimated within our theory at high de
sities and low temperatures. One way to improve upon
Bethe-Peierls treatment~in this range of temperature an
density! for the short-ranged correlations is the inclusion
higher order clusters. However, for fluids this procedure
severely restricted by the fact that nontrivial higher ord
distribution functions of the fluid which are required in ord
to carry out such a calculation are not known. In order to
a feel for the importance of these higher order correlatio
for the relative stability of the fluid and the triangular sol
phases, we have repeated the calculation with a Bethe-Pe
approximation of the short-ranged correlations in the tria
gular solid. This produces, however, an incorrect phase
gram where the gas-liquid critical point is metastable and
high densities the triangular solid remelts. The answer m

FIG. 2. Free energy versus density atT*50.1 in the case of
gas–square-solid coexistence. The square-solid density is fixe
r*51, see text, the square-solid free energy is marked by a fi
square, and arrows show the coexistence densities for the
square-solid coexistence and for the square-solid–liquid coe
ence. The dashed line is the fluid free energy, the solid line is
convex envelope of the free energies~fluid and square solid!.
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also lie in the way the short-ranged AF correlations are
commodated by the fluid. Namely, it is possible that in t
range ofT* andr* the system may not tend to remain eith
a liquid or a triangular solid, but may make use of the sho
ranged AF correlations by going over to atetratic structure
@23# with no long-ranged positional order but with stron
fourfold long-ranged orientational order. An equilibriu
structural ‘‘glass’’ may be another possibility. Indeed, ana
gouspressure induced amorphizationtransitions are experi
m
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mentally observed@24# in real systems. In any case, a pe
turbative theory for the AF ordering in this phase may not
sufficient and new ideas are required. We are, at pres
carrying out detailed, large scale Monte Carlo simulations
this regime to settle the issue.
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