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Perturbative density functional theory for phase transitions
in a two-dimensional antiferromagnetic fluid
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We study the temperature-density phase diagram of a fluid in two dimensions consisting of hard disks
which, in addition, possess an interiiiging) spin degree of freedom. The Ising spin of each disk couples with
those of its neighbors via a short-ranged antiferromagriéf) interaction. Recent Monte Carlo simulations
have shown that this system undergoes a gas-liquid transition followed by a gas—AF-ordered-square-solid
sublimation transition at low temperatures. Using a perturbative density functional approach we obtain, in
addition to the observed transitions, a freezing transition at high density to a frustrated triangular solid phase.
Interestingly, the calculated phase diagram suggests that at low temperatures, this transition is suppressed so
that over a range of parameters, the system refuses to crystpBiz@63-651X%97)07902-9

PACS numbg(s): 64.70.Dv, 75.70.Mm, 81.30.Bx

In this Brief Report we present a density functiofd)2]  whereU(r) is the hard disk potential for particles of diam-
theory for phase transitions in a system of hard disks in twatero, S are spin variables§=+1), andJ(r) is given by
dimensions with Ising internal states which couple antiferro-
magnetically to their neighbors. This antiferromagnéa€)
fluid, which is essentially equivalent to an ordering binary —€, o<r<A
alloy studied[3-5] in an ensemble where the chemical po- J(r)=
tential difference of the two species is held fixed and equal to
zero, is expected to have a rich phase diagram due to an

interplay between the tendencies to order and to pack aSor A we chose the valud =1.40 which restricts the AF
densely as possible. In two dimensions the closest packeieraction to nearest neighbors thus eliminating complica-
structure is a triangular lattice, which, however, cannot showiqns que to frustration in the AF-ordered square lattice struc-

an Ising antiferromagnetic transition because of frustration o The strength of the AF interactianfixes the energy

effects. Monte Carlo resul{$] show the presence of a gas- g.gje of the problem and the hard disk diametesupplies a
liquid transition driven by short-ranged AF order in the lig-

uid, followed by a gas—almost-fully-AF-ordereduare

2

0, r>o.

solid transition at low temperatures. The antiferromagnetic 10.0 Fos
interaction therefore favors an ordered square lattice solid -1 T

. . . T 0.4 /—\
over a disordered triangular lattice at low temperatures. At 7 et A
high density, the effects of close packing are expected to be 0o
dominant and at the close packing density the triangular solid 1.0 | 00 04p 08 N
is expected to be the stable phase at all temperatures. Indeed, ) gas liquid

a study of the competition between these effects promises to
be interesting.
We describe below a calculation where the effects of

short- and long-range AF order have been kept perturba- 01 F 5T |
tively over the hard disk contribution to yield a complete . . -
phase diagram of this system. Our calculated phase diagram 00 02 04 06 08 1.0 p

(see Fig. 1 shows stable regions corresponding to all the o )

phases seen in the simulatifs]. For low temperatures and _ FIG- 1. TemperatureT*) and density *) phase diagram of
high densities we obtain an intriguing suppression of théhe antiferromagnetic f_de as obtal_ned from dt_ansnty functional
freezing transition to the triangular solid within our pertur- N€O1Y- The square lattice has density = 1 and is denoted by
bative calculation. This may signal a breakdown of standar(JJ_“' The region where the triangular lattice is stable is denoted by
perturbation theofy in this regime, leading to the interestin /A. The dotted lines represent the extrapolated coexistence bound-

L L gary between the liquid and the triangular lattice. Our perturbative
poss'b'“ty of the presence of nontrl\_/l_aéhnd nonperturba- density functional theory breaks down for low temperatures and
tive) phases without long-ranged positional order.

. . . . : . high densities so that we do not observe a freezing transition in this
; -l;ﬁ bzlgzl?l, g:é)n&der the followind|-particle Hamiltonian  ange of values fo™* and p*. Inset shows our calculated gas-
or tne uld:

liquid phase boundary together with Monte Carlo results from Ref.
N N [6]. The Bethe-Peierls approximation overestimates the short-range

H=— 2 J(ri— rj)SiSj + 2 U(r— rj), (1) AF ordering in the ﬂwq, Ieadlng tq a hlghgr gqs-hqmd critical point
i< i<i temperature. The horizontal line is the triple line.
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length scale. The full interaction between the disks thus conease this may be achieved by going over one order higher in
sists of a hard disk part and a square-wetep part if the  a systematic, but approximate, cluster expangib?] and
spins point in oppositésameé directions. using a Bethe-Peierlgl3] formalism to keep the dominant
Within the density functional formalismil] the Helm-  nontrivial contribution from short-ranged AF order. In the
holtz free energy per unit volume at temperaturespirit of the ferromagnetic calculatidil,7] we use
T*:=Tle=B"e and densityp* =po? is taken to be a
functional of the time averaged number dengifyr). The
equilibrium value of this free energy is obtained by minimiz- ~ Aft(p) =p*In[p*]=p* —p*IN[1=7]+p* [1—7]
ing this functional for choices g#(r). For magnetic systems
which show long-ranged magnetic order, this functional was —p*In[cosh Be)]Jer, €
generalized 7] to include the magnetization density(r)
such that, in addition, one needs to minimize in the space oivhere the packing fraction= m7p* /4 in two dimensions and
m(r) also. In general, we decompose the free energy of théhe effective interaction strength in the fluid can be approxi-
fluid and the solids into the reference hard disk partmated byJeﬁzfj;*Adzrpg(r) with g(r) taken to be the pair
fuo([p]), and terms containing the contribution of the mag-distribution function of theeferencehard disk fluid. For the
netic interaction. Perturbative treatments of attractive intercalculations reported in this paper, we have obtained this
actions are known to yield essentially correct results for thequantity by numerically Fourier transforming the accurate
freezing transition of Lennard-Jonf8] and square-well9] and convenient analytic form for the Ornstein-Zernike direct
fluids. We discuss below this perturbative density functionalkorrelation function[14] for the hard disk fluid in two di-
theory for the fluid, triangular solid, and the square solid,mensions due to Rosenfefd5].
respectively. In the case of the triangular solid the magnetic contribu-
In contrast to the ferromagnetic cgs9,11,7, the inclu-  tion to the free energy is somewhat more accurately known.
sion of the magnetic interactions for the AF system is non-The Ising AF interaction is frustrated in a triangular lattice at
trivial. The main difference lies in the fact that the fluid and any nonzero temperature. The triangular lattice, like the
the triangular solid phasedo not possess long-ranged AF fluid, has only short-ranged AF correlations. As the tempera-
ordering[6]. However, the effect of short-range AF order in ture is lowered these short-ranged AF correlations diverge,
both the fluid and the triangular solid is expected to be imdeading to a zero temperature phase transition in the nearest
portant. In the former case, this leads to a liquid-gas transineighbor Ising AF model on a perfect triangular lattjdé].
tion as observed in Monte Carlo simulatiof]. A mean In our case, since the pair interaction range is limited to
field treatment for the magnetic part, on the other hand, willnearest neighbors we may use #actexpression for the
completely neglect this effect. In order to include the freeexcess free energy due to these short-ranged AF correlations
energy contribution of local short-ranged AF ordering, wefor the nearest neighbor AF Ising model on a triangular lat-
would have to go beyond mean field theory. For the fluidtice [16,17),

Bf([pD)=Bfup([p]) +p*In(2) — p*In(e™3#*+ )

1 27 (27
+p* Wf J In{1+2x[cosw,+ COSw,+COY7T— w1 — wy) — 1]} dwdw,, (4)
o Jo

where we have subtracted the high temperature entropy ﬂfs([p])ZﬂfHD([p])"‘gf(i/_rm(r)gm(r)
[In(2)] from the magnetic part, and«=(exg—4B¢]
—1)/(exd —4Be]+1)% dr

The square lattice exists only at extremely low tempera- - f Vp(r)ln[Zcosl{Bgm(r)}]. (5)
tures. In addition, we find that the square lattice is almost
completely AF ordered. In this case we expect a mean field
treatment of the magnetic part to be exact. The unfrustrated;he integrals are over the full two-dimensional “volume”
nearest neighbor AF square solid, however, maps exactly td. The magnetic molecular fields,(r) is given by
its ferromagnetic counterpart which has been studied earlief,(r)=— fdr'm(r—r’)J(r’). The staggered magnetization
in Ref. [7] within a mean field approach. To simplify the densitym(r), for the antiferromagnetic case that we consider
calculation, we have here further restricted the average deinere, is proportional to the number density, i.e.,
sity of the square lattice tp* =1. This is justified by the m(r)=*=mgp(r), where the numben, determines the stag-
observation that the square lattice in the, equivalent, ferrogered magnetization of the lattice at any temperature and
magnetic cas¢7], was found to be stable only for a tiny density and has to be obtained self-consistently.
region centered around densjt§ = 1. The free energy func- For the hard disk contribution to the free energy for the
tional in this approximation is given by solid phases, we use the functiogl,([ p]) of the nonuni-
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form densityp(r). In this calculation, for the hard disk free
energy functional we have used the Ramakrishnan-Yussouff 0 =
functional[1] in the form introduced by Ebner, Krishnamur- \\\
thy, and Pandif18]. Using any other free energy functional pf ™
[1] for the hard disk part gives more or less identical results AN
as long as it reproduces the two-dimensional hard disk freez- | \
ing transition(for T* — ) accurately. For both the solids, N
the free energy functional needs to be minimized with re- \
spect to choices dinonuniform) densitiesp(r) to obtain the 20 ¢ \
Helmholtz free energies of the solid phases. For the AF \
square lattice, in addition, one has to minimize the free en- \
ergy functional Eq(5) with respect to choices afy. To this -30 . ,
end, we approximate the one body dengify) at position 0.0 05 ¢ 10

r by a set of nonoverlapping Gaussians with widtha?

centered on lattice siteR in a lattice of lattice parameter FIG. 2. Free energy versus density Bt=0.1 in the case of

a: gas—square-solid coexistence. The square-solid density is fixed at
p* =1, see text, the square-solid free energy is marked by a filled
square, and arrows show the coexistence densities for the gas—

PoAnaz exd — (I’—R)Z/az] 6) square-solid coexistence and for the square-solid—liquid coexist-

a’w @ ’ ence. The dashed line is the fluid free energy, the solid line is the
convex envelope of the free energidisiid and square soljd

p(r)=

wherep, is the average density of the solid aAd denotes
the area of the unit cell. This ansatz for the density now, .
reduces the free energy functional téuactionof « (and in
addition, m, for the square lattice structyreThe global
minimum of this function in the space ef (andm,, if ap-

At low temperatures the stability of a square lattice struc-
e at fixed densityp* = 1 is examined. At temperature
below T* =0.11 we find stable free energy minirfiag. (5)]
with realistic values for the Gaussian width parameter

plicable for a choice of R} gives the Helmholtz free energy a>10 so that the density(r) consists of nonoverlapping

of the chosen lattice. Knowing the free energies of the fluidGaugsians f:fantered on lattice sites. The square lattice struc-
from Eq. (3), triangular solid[Eq. (4)], and the square solid ture is stabilized solely by the appearance of the staggered

[Eq. (5)] one can construct the full phase diagram in themagljgtization due to the AF interaqtion. Thg cpex'istence
temperature-density plane after obtaining the coexistencdensities to the gas phase and the high density liquid phase
densities (by constructing the convex hull—‘Maxwell’'s Were computed with the double tangent constructisee
Construction’) at any given temperature. Flg 2) Interestingly, the square lattice phase is found to be
Our central result, the phase diagram of Hamiltoran ~ in coexistence with a low density gas fof <1 and a high
is presented in Fig. 1. We obtain a gas-liquid coexistencelensity liquid phase fop*>1 in this temperature range
region with a critical point at temperatué =0.47 and den- Wwhereas the triangular solid phase is consistently metastable.
sity p¥= 0.4, which is somewhat higher than the Monte This is in direct contrast to the ferromagnetic cigewhere
Carlo results of Ref[6]. This is due to the fact that the the square lattice structure was seen to be in coexistence with
Bethe-Peierls approximation for short-ranged correlations i low density gas and a triangular solid.
the AF fluid overestimates the effect of these correlations. It Our study thus raises the following interesting question:
is well known [19,20 that the convergence of clustet2] =~ What happens to an AF fluid at low temperatures and high
expansions for lattice models with competing interactions islensities? Although the initial increase of the coexistence
poor and oscillatory. At high temperature the magnetic partiensities for the fluid to triangular solid freezing transition
in the Hamiltonian becomes less important and the fluidcan be understood in terms of frustration effects in the trian-
freezes to a triangular solid without AF order with freezing gular solid, it is possible that the effects of AF correlations
parametersd; = 0.84) which are in good agreement with are being incorrectly estimated within our theory at high den-
results obtained in previous studigal,22 for the freezing sities and low temperatures. One way to improve upon the
of hard disks. When the temperature is lowered, however, thBethe-Peierls treatmer(in this range of temperature and
AF interaction becomes more and more important. Since thdensity for the short-ranged correlations is the inclusion of
AF interaction is frustrated in the triangular lattice, there ishigher order clusters. However, for fluids this procedure is
no additional incentive for the system to freeze so that theseverely restricted by the fact that nontrivial higher order
coexistence densitigacreasewith decreasing temperature. distribution functions of the fluid which are required in order
For temperatures beloW* =1.5 the frustration effects be- to carry out such a calculation are not known. In order to get
come so pronounced that the triangular solid structure bea feel for the importance of these higher order correlations
comes metastable and we fail to observe freezing. Howevefor the relative stability of the fluid and the triangular solid
at these low temperatures and high densities most probabjghases, we have repeated the calculation with a Bethe-Peierls
our approximation for the fluid phase is untenafilee free  approximation of the short-ranged correlations in the trian-
energy has been extrapolated for densities abovgular solid. This produces, however, an incorrect phase dia-
p*=0.875, which is above the hard disk freezing density gram where the gas-liquid critical point is metastable and at
We comment on this aspect below. high densities the triangular solid remelts. The answer may
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also lie in the way the short-ranged AF correlations are acmentally observedi24] in real systems. In any case, a per-
commodated by the fluid. Namely, it is possible that in thisturbative theory for the AF ordering in this phase may not be
range ofT* andp* the system may not tend to remain either sufficient and new ideas are required. We are, at present,
a liquid or a triangular solid, but may make use of the short-carrying out detailed, large scale Monte Carlo simulations in
ranged AF correlations by going over tatetratic structure  thjs regime to settle the issue.

[23] with no long-ranged positional order but with strong ]

fourfold long-ranged orientational order. An equilibrium  P-N. thanks the DFG for suppoftieisenberg Founda-
structural “glass” may be another possibility. Indeed, analo-tion). Computer time on the IMSc network is gratefully ac-
gouspressure induced amorphizatigransitions are experi- knowledged.
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